Feasibility of Roadway Electrification Using Wireless Power Transfer

Jason Quinn¹, Braden J. Limb¹, Regan Zane¹ Thomas Bradley² ¹Utah State University ²Colorado State University

ENERGY DEVELOPMENT

Advancing Utah's Energy Future

Colorado State University

USTAR UTAH'S TECHNOLOGY CATALYST

Electric Vehicle & Roadway Research Group

Roadway Electrification Using WPT

Current Electric Vehicle Limitations

Heavy Batteries with Low Range

Long Charge Times Limited Charging Locations WPT Electric Vehicles

Cheaper Vehicle Smaller on Board Energy Storage

Unlimited Range

Economic

OUTLINE

System Modeling

Feasibility Results

Environmental Optimization

Grid Impact

Model Path

Dynamic Vehicle Modeling

Vehicle Model Validation

OUTLINE

Economic

System Modeling

Feasibility Results

Environmental Optimization

Grid Impact

Roadway Modeling

United States Roadways

Roadway Modeling

United States Roadways

Modeled System Covers 77% of Miles Driven

Roadway Cost: \$2.4 million per mile

	ICE	WPT	Energy Savings
_	(Whr mi⁻¹)	(Whr mi⁻¹)	(%)
Light Duty Interstate	1,375	336	76
Light Duty Urban	1,807	294	84
Truck Interstate	4,958	1,617	67
Truck Urban	8,005	850	89

Electrified Roadway Coverage

25 KW Power Transfer

82% Transfer Efficiency

Interstate 17.6 KW Average 85% Charge Time 83.5% Coverage

<u>Urban</u> 5.76 KW Average 28% Charge Time 2.6% Coverage

Vehicle Level Results

Societal ROI

Societal ROI w/ Reimbursement Plan

18.7 Year Payback Time for 10% Fleet Penetration

OUTLINE

Economic

System Modeling

Feasibility Results

Environmental Optimization

Grid Impact

Environmental Impact - GHGs

Conventional Vehicle: 486 g-CO₂ mi⁻¹

Environmental Impact - GHGs

Electric Vehicle: 238 g-CO₂ mi⁻¹ 51% Reduction

Environmental Impact – Criteria Pollutants

OUTLINE

System Modeling

Feasibility Results

Economic Environmental Optimization G

Grid Impact

Optimization

WPT Power Requirements

WPT Pad Placement

Real World Drive Cycles

"Millions of second by second real world drive cycle data."

WPT Vehicle Optimization

~12,000 Real World Drive Cycles

Optimization Results

Optimization Results

Battery Range	WPT	Supercaps	Satisfied
25	0	0	79.8%
25	25	7	91.0%
25	25	10	94.5%
25	25	13	96.0%
25	50	13	97.8%
25	50	20	99.0%
25	100	50	98.6%
30	25	13	97.3%
30	0	0	83.7%
30	50	17	99.3%
30	50	13	99.0%
20	25	13	91.4%
20	0	0	73.6%
35	0	00	87.1%
35	50	10	98.8%
35	25	13	97.7%

OUTLINE

Economic

System Modeling

Feasibility Results

Environmental Optimization

Grid Impact

Vehicle Load Distribution

Maximum: 12.8% of vehicles on road at a time, 87.2% available for V2G

Available Power

Power available is 3.5X greater than power consumed.

Load Shifting

Constant 325 W per vehicle during peak demands satisfies energy consumption

Summary

Satisfies consumers & Minimal impact on grid

Need to advance modeling

Current and Future Research

- Concurrent Vehicle and Architecture Optimization (GPS enabled drive cycle data)
 - Preliminary results: Increased roadway coverage required
- Economic Impact of Environmental Benefits
 - Improved health from metropolitan air quality change
- Micro/Macro Grid Modeling
 - Economic value of energy storage
- Case Studies
 - Network Modeling
 - Closed campus impact
 - Dedicate route deployment

Contact Information: Jason Quinn Jason.Quinn@usu.edu & Braden Limb Braden.limb@gmail.com

1111